

Java Garbage Collectors

Rémi Forax – Jan 2026

Don’t believe what I’m saying !

Vocabulary
Parallel

Uses several threads to do the GC work

Concurrent
GC work is done at the same time as the application run

Incremental
Current GC cycle reclaim only parts of the heap,
but keep information for later cycles

Kind of Memory inside the JVM
● Each thread has its own stack
● GC Heap (-Xmx, -Xms)
● Native C memory (system calls)
● Metaspace

– metadata per ClassLoader
● Klass, constant pool, bytecode,

oopMap, profiles for IC, …
– code cache

s
t
a
c
k

s
t
a
c
k

s
t
a
c
k

s
t
a
c
k

heap

metaspace

metaspace

native

Java GCs

5 Garbage Collectors :
– Serial (Sun then Oracle)

– Parallel (Sun then Oracle)

– G1 (Sun then Oracle)

– Shenandoah (RedHat then Amazon)

– ZGC (Oracle)

GC Performance
Throughput

The % of the time spend in the application instead of in the GC

Latency
Duration of the GC pause + GC work done by the application

Footprint
Amount of native memory used by the GC itself

Serial GC

s
t
a
r
t

s
t
o
p

application GC application

GC for CLIs and small cloud containers

Parallel GC

GC for batch programs (good throughput)

s
t
a
r
t

s
t
o
p

application GC application

s
y
n
c

mark copy

G1 GC (default)

latency goal <= 200 ms (-XX:MaxGCPauseMillis)

Garbage-first garbage collection – ISMM 2004
Printezis, Flood, and al

s
t
a
r
t

s
y
n
c

application

s
y
n
c

mark young copy

s
t
o
p

application

Copy
(+ old incremental)

mark old

s
y
n
c

s
y
n
c

mark young

Shenandoah v2

latency goal <= 1 ms)

Shenandoah - Clark et al. – 2021, Flood al. – 2016

s
t
a
r
t

s
t
o
p

application application

s
y
n
c

mark

s
y
n
c

copy
(old incremental)

remap +
next mark

ZGC v2

latency goal <= 1 ms

The Z Garbage Collector - Österlund – 2026 - ISBN 9781003595366

s
t
a
r
t

s
t
o
p

application application

mark remap +
next mark

s
y
n
c

copy

s
y
n
c

Garbage Collectors

Kind of GCs
Determine liveness
– Reference counting (find dead objects, problem with cycles)
– Tracing (find live objects)

● Precise GC ? (stack is parseable)
– vs conservative GC : BoehmGC (interop with C)

Moving GCs ?
– Non moving (interop with C), sweep → free
– Moving GC (pointers are opaque)

Allocation (Moving GC)

Thread Local Allocation Buffer (TLAB)
– Bump pointer
– Concurrency (CAS) only at the end of the pages

In Java, allocators are NUMA aware

Object Header from GCs POV

Each Java object has a header
– Tag bits (2 bits)
– Age bits (4 bits)

Mark Word (normal):
 64 39 8 3 0
 [.......................HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH.AAAA.TT]

Class Word (compressed):
 32 0
 [CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC]

Header (compact):
 64 42 11 7 3 0
 [CCCCCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHVVVVAAAASTT]
 (Compressed Class Pointer) (Hash Code) /(GC Age)^(Tag)

Mark Phase

Tracing
From the roots, mark recursively all objects by following
pointers
– Roots in Java

● references on stack
● static fields
● + JNI roots, VM roots

Real implementations are not really recursive
=> stack overflow !

Precise GC => Safepoints
The stack frame layout has to be known for marking
– GC operations can only run at safepoints

In Java
– Abstract interpretation of the bytecode

● Stored in oopMap (metadata)
– Safepoints

● At allocation site (new ...)
● At the end of a method
● At the end of a body of a non counted loops

Tri-colors Marking
Breadth First Search:
– White : not yet marked
– Grey : working set
– Black : marked and children are marked

At the end, black and white are swapped

In Java
– grey set : 1 queue per GC threads + Work stealing
– white/black are bits in the object header

Tri-colors Marking

stack

heap

Concurrent marking

Mark when application run (not STW)
– Snapshot At The Beginning (SATB)

During marking phase
– New objects are marked black
– If an object field mutated by the application,

the object is added to grey set (if ref not null)

Generational GCs
Generational Hypothesis

young objects are more likely to die than old objects
“most objects die young”

A Real-Time Garbage Collector Based on the Lifetimes of Objects
Henry Lieberman and Carl Hewitt – MIT - 1981

Generation Scavenging: A non-disruptive high performance storage
reclamation algorithm
David Ungar – ACM - 1984

Regions

Contiguous (Serial, Parallel)

Partitions (G1, Shenandoah, ZGC)

eden survivor survivor old

Y Ys O

O O O

Ys O O

Y = young
O = old

Regions have different sizes
2M < size < as big as an array

Generational GCs

Different kind of collection
– Minor

● mark young (+ RememberSets) and collect young
– Major (10 to 100 x less)

● mark all and collect old
– Full (System.gc() or allocation failure)

● mark all and collect all

Remember Set
Data structure that register a card (zone) in a
region that contains a reference to another region
– G1: 1 card 512 bytes
– ZGC: 1 card == 1 field

RememberSet Old regions -> Young regions
– A card is a root for minor collections

x.a = y;

each bit is 1 card of the old region

old

Remember Set using a card table

eden survivor survivor

card

xy
heap

GC write barrier
Snippet of code added after each field write
– Update the corresponding RememberSet

(if necessary)

– Write Barrier of G1
if (region(x.a) == region(y)) goto done; // Ignore refs same region
if (y == nullptr) goto done; // Ignore null
if (card(x.a) != CLEAN) goto done; // Ignore non-clean card
*card(x.a) = DIRTY; // Mark the card
done:

G1GC: Collection of old regions

Old generation is usually big
– Slow if collected in one go => collect incrementally

– Marking old gen
● starts with marking young

+ young to old pointers are additional roots
● concurrent marking

+ compute the RememberSet in between each old regions

RememberSet
Young regions share a RememberSet
– When doing a major collection

● Each old region has its own RememberSet

Y Y O

O O O

Y O O

Young RememberSet
 0xAD8A...

Card at 0xAD8A...

Zone 9 RememberSet
 0xBB80...

Card at 0xBB80...

heap

Evacuation Phase

All objects are allocated in the from-space

If STW
– Copy all the marked objects to the to-space

● Object headers in the from-space point to the new address
● Fields are updated during the copy

– Update all the root pointers
● roots (stacks + static)
● cards

– Then, swap the two spaces

Copying
Semispace Cheney 1970

from

toto

Compacting
LISP-2 1970

Reuse the same space
=> Move all objects at the beginning of the space

If STW
– Create a relocation forward buffer (hash, sorted list)

with old address → new address for all the marked objects
– Update all the root pointers

● roots (stacks + static) + cards
– Move all the objects at the beginning of the space, update fields
– The allocation pointer is set after the last object

Forward:
 4 → 1, 5 → 2, 6 → 3

G1 (garbage first) GC
Incremental evacuation
– Sort young regions by % garbage

● Sort old regions by % garbage and freed space
– Evacuate incrementally the first regions in latency

budget
● Non evacuated zones will be in subsequent GC cycles

GC must to be triggered before allocation pool
exhausted

Shenandoah GC
G1GC algo + concurrent evacuation/remap

Load Barrier
– application threads can also do object evacuation

GenShen (generational):
– Major marking = minor marking but ref to old gen are kept as root for old

gen marking
– Old gen regions are evacuated incrementally by young collections

Load Barrier

Snippet of code inserted in front of each field
read
– Copy object if necessary, fix source field pointer

– Load Barrier of Shenandoah
if ((thread.gc_state & HAS_FORWARDED) != 0)
 if ($in_cset_fast_test[region(x.a)]) // region in collection set ?
 slow_path(); // copy? and fix x.a

Floating garbage ?

Even if a region if fully evacuated, it can not be
re-used
– We have to wait until all pointers have been fixed

=> floating garbage

The Heap has to be dimensioned accordingly

ZGC
Fully concurrent (mark/fix refs + evacuation)
– Application also does mark/fix refs + evacuation

Use pointer coloring + Load/Write Barrier
– Mark bits (if invalid => add to the grey set)
– Remap bits (if invalid => object must be copied)
– Free region even with dangling pointers

Colors of pointers
Store GC states in low bits of pointers of the heap
12 color bits:
– 4 bits Remap: 1000, 0100, 0010, 0001 (where it goes?)
– 4 bits Mark: Mark0, Mark1 * 2 (old or young)
– 2 bits Finalizer: 10 or 01 (reachable only using finalizer)
– 2 bits RememberSet (r): 01, 10, 11

R0 R0 R1 R1 M0 M0 M1 M1 F F r r

Good colors
Load Good

Mark Good

Store Good
R0 R0 R1 R1 M0 M0 M1 M1 F F r rR0 R0 R1 R1 M0 M0 M1 M1 F F r r

R0 R0 R1 R1 M0 M0 M1 M1 F F r rR0 R0 R1 R1 M0 M0 M1 M1 F F r r

R0 R0 R1 R1 M0 M0 M1 M1 F F r rR0 R0 R1 R1 M0 M0 M1 M1 F F r r

Color during Marking/Remapping

3

2

0

1

load

load

Good : Mark0

3

2

0

1

load

load mark

mark

Good : Mark0

3

2

0

1

load

Good : Remapped

4
load

Forward: 2 → 4, 3 → 5

Good : Mark1

load

load

3

4

Forward: 2 → 4, 3 → 5

ZGC Load/Write Barrier intel x64

Load Barrier
movq 0x10(%rax), %rcx
shrq $good_remap_bit_index, %rcx // load good or null + uncolor
ja slow_path

Store Barrier
testq $store_bad_mask, 0x10(%rax) // store good or null
jnz slow_path
shlq $good_remap_bit_index, %rcx
orq $store_good_color, %rcx // recolor
movq %rcx, 0x10(%rax)

Summary

Java GCs
5 generational GCs :
– Serial STW, 1 GC thread, WB
– Parallel STW, n GC threads, WB
– G1 regional, concurrent mark, STW incremental evacuation,

n GC threads, latency < 200ms, WB
– Shenandoah regional, concurrent, latency < 1ms,

n GC threads, WB + LB (not generational by default)
– ZGC regional, concurrent, latency < 1ms, n GC threads,

WB + LB (restricted to 64bits pointers)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

